Karl-Heinz Ribbert

Stratigraphische und sedimentologische Untersuchungen
im Unterkarbon nördlich des Oberharzer Diabaszuges
(NW-Harz)

1975

Im Selbstverlag des Geologisch-Paläontologischen Instituts
der Georg-August-Universität Göttingen
Karl-Heinz Ribbert

Stratigraphische und sedimentologische Untersuchungen im Unterkarbon nördlich des Oberharzer Diabaszuges (NW-Harz)

1975

Im Selbstverlag des Geologisch-Paläontologischen Instituts der Georg-August-Universität Göttingen
Als Dissertation eingereicht am 20.6.1973
bei der Mathematisch-Naturwissenschaftlichen Fakultät
der Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 11.7.1973

Anschrift des Autors: Karl-Heinz Ribbert
Geologisches Landesamt
Nordrhein-Westfalen
D 4150 Krefeld
de-Greiff-Str. 195

Diese Arbeit ist im Sonderforschungsbereich 48 "Entwicklung,
Bestand und Eigenschaften der Erdkruste, insbesondere der
Geosynklinalräume". Göttingen, entstanden.

Kleinoffsetdruck FUNKE, Göttingen

Lower Carboniferous Flysch in the NW Harz Mountains includes shales and greywackes. Detailed sections in the shale sequence at the base of the greywackes and tectonic cross-sections suggest a model in which time-rock units have a flat lens-shaped form. The time-rock units overlap one another in an imbricate fashion and each grade from greywacke to thin shale units northwards. The maximum greywacke deposition shifts NW during the Upper Lower Carboniferous (eu III). Sedimentological studies show cyclical deposition involving an upward increase in distal character partly combined with current directions at variance with the general trend.

Karbon, Stratigraphie, Sedimentologie, Flysch, Harz (Deutschland) K.-H. Ribbert, Geol. L. - Amt NRW, D-415 Krefeld, de-Greiff-Str. 195

SUMMARY

Stratigraphical and sedimentological investigations in the shales and greywackes of the northwest Harz Mountains allow a detailed reconstruction of the depositional history of this part of the Rhenohercynian geosyncline.

The dominant feature of this area in the Devonian is the West Harz Schwelle, with its thin cephalopod-limestones and the Iberg reef, which developed in a basin within this zone. During the Devonian and Lower Carboniferous basalts intruded along the strike-parallel boundaries of synsedimentary blocks, especially in the zones transitional to the Goslar Trough in the north and the Söse Basin in the south. After the close of quartzite deposition in the area of the Acker Zug, the region to the northwest increasingly assumes the character of a flysch basin.

The flysch sediments (greywackes) first appear in the southeast (Söse Basin, Diabaszug) in Lower Carboniferous III alpha to early III beta. They subsequently spread northwestward so that at the northern margin of the Harz Mountains the uppermost Lower Carboniferous III beta is still represented by the greywacke-free, Kulmtoschiefer (slate) facies.

Cross-sections, normal to strike or the general current direction, through the sediments of a single goniattite Subzone show a flat lens-shaped form. In the course of the Lower Carboniferous III, successive lenses shift northwestward, and overlap one another in an imbricate fashion. For each time unit the greywackes grade northward into thin shale units.

In vertical section the flysch sediments show a cyclic deposition which essentially involves an upward increase in distal character. Such cycles are to be understood in terms of the northwestward advance of greywacke deposition and the resulting, large-scale, imbricate structure. Distal units show current directions at variance with the general trend. This is interpreted as the influence of a relief built up mainly by the sediments themselves.

The following model emerges for the sedimentary history during the flysch phase: Subsidence in the area of the West Harz Schwelle took place before the advancing front of greywacke deposition, and shifted northward with this front. The comparatively stronger subsidence in the Goslar Trough may have continued during the flysch phase.

ZUSAMMENFASSUNG

Das beherrschende Element dieses Raumes ist im Devon die Westharz-Schwelle mit ihren geringmächtigen Cephalopodenkalken und dem in einem Teilbecken dieses Raumes aufgewachsenen Iberger Riff (Abb. 1). An synsedimentären, streichenden Schollengrenzen, vor allem im Übergangsbereich zum Goslarer Trog im Norden

Die Flyschsedimente (Grauwacken) setzen im Südosten (Söse-Mulde, Diabaszug) im Unterkarbon III alpha bis tieferen III beta ein und verlagern sich in der Folgezeit kontinuierlich nach Nordwesten, so daß am nördlichen Harzrand die grauwackenfreie Fazies der Kulmtonschiefer bis in das höchste Unterkarbon III beta hinaubreitet.

Für den Ablauf der Sedimentation während der Flysch-Phase ergibt sich daraus folgendes Bild: Die Absenkung im Bereich der früheren Westharz-Schwelle erfolgt an der Front der Grauwackenschüttung mit dieser nach Norden fortschreitend. Die relativ stärkere Absenkung des Goslarer Trages dürfte während der Flysch-Phase angehalten haben.

VORWORT

Abb.1: FLYSCH UND PRÄFLYSSCH IM NORDWEST-HARZ
I. EINLEITUNG ... 2
A. PALÄOGEOGRAPHISCHER ÜBERBLICK 2
B. PROBLEMSTELLUNG ... 4
C. GRUNDLÄGEN DER UNTERSUCHUNGEN 4
 1. Erforschungsgeschichte 4
 2. Die Gesteine des Unterkarbon II und III 5
 a. Petrographie der Grauwackenfolge 5
 b. Sedimentationsmechanismus der Grauwacken 7
 3. Die Faunenführung im Unterkarbon 7
 a. Goniatiten des Unterkarbon III 8
 b. Begleitauna .. 9
 c. Spurenfauna 9
II. BEOBACHTUNGEN ... 10
A. STRATIGRAPHISCHER TEIL 10
 1. Einleitung ... 10
 2. Beschreibung der Profile in der kieselg-tonigen Fazies 10
 a. Profile entlang des Oberharzer Diabaszuges 10
 b. Profile am SE-Rand des Oberharzer Devonsattels 11
 c. Profile westlich des Oberharzer Devonsattels 12
 3. Die Grauwacken des Iberger Riffes 16
 4. Querprofile durch die Grauwackenfolge 17
 5. Zusammenfassung 30
 a. Das Unterkarbon II und III vor Beginn der Grauwackenschüttung (Praeflysch-Phase) 30
 b. Die Grauwackenschüttung im Unterkarbon III und Namur (Flysch-Phase) 32
B. SEDIMENTOLOGISCHER TEIL 36
 1. Einleitung ... 36
 2. Der zyklische Aufbau der Grauwackenfolge 41
 a. Mucronatus-Subzone 42
 b. Spirale-Subzone 43
 c. Grauwacke-Zyklus Öker-Vorsperre 43
 3. Die Schüttungsrichtungen der Grauwackenfolge 43
III. DEUTUNG .. 46
Vorbemerkungen ... 46
A. PRAEFLYSCH-PHASE 47
B. FLYSCH-PHASE .. 47
IV. VERZEICHNIS DER GONIATITENFAUNEN 51
LITERATURVERZEICHNIS ... 56
1. EINLEITUNG

A. PALÄOGEOGRAPHISCHER ÜBERBLICK

Als Beispiel für die Tektogenese eines synorogenen, d.h. in einem späten Stadium der Geosynklinalentwicklung angelegten Beckens wird die unterkarbonische Grauwacken-Beckenfüllung des NW-Harzes untersucht.

Abb. 2: Lage des Arbeitsgebietes NW des Diabaszuges (1)
Location of the area investigated (1)

Während des unteren Mitteldevons beginnt auch der Diabasvulkanismus, der die Ränder der Schwelle im NW (Wolfshagen) und im SE (Diabaszug) begleitet. Auf einem solchen Schwellenrand-Diabas kann das Iberger Riff im Givet aufgewachsen sein.

Im Beckenbereich dauert die Tonschieferfasies bis in die Gattendorfia-Stufe des Unterkarbon an (Hangenberg-Schiefer). Die Profile in Schwellenposition zeigen im höheren und höchsten Oberdevon stellenweise extreme Konkretion und Schichtausfälle. In anderen Profilen (Haus Herzberger Schacht, Tannhailer...
Wasserlauf) geht die Kondensation bis ins tiefe Unterkarbon. Im Unterkarbon II beginnt in allen Profilen mit den liegenden Alanschiefern die zunächst dunkle, kieselige Schichtfolge, in die sowohl Diabase (Schwellenrandpositionen), als auch erste geringmächtige Grauwacken eingeschaltet sein können.

B. PROBLEMSTELLUNG

Aus der paläogeographischen Entwicklung ergab sich für die Untersuchung der Grauwackenfolge des NW-Harzes folgende Problemstellung: Ausgehend von der kinematischen Gliederung des Sedimentationsraumes in Becken und Schwellen während des Devon tauchte die Frage auf, wie weit am Ende des Devons noch eine deutliche Faziesdifferenzierung vorhanden war und in wie weit ein mögliches Relief die Sedimentation im Unterkarbon, besonders aber die Schüttung der Grauwacken, beeinflussen konnte.

Eng damit ist die Frage verbunden, ob im Unterkarbon während der Grauwackenschüttung die devonischen Senkungsräume (Becken) als Folge der Sedimentanhäufung weiter einsanken und zwar insgesamt oder in einem von Süden nach Norden vorwandernden Trog. Die Untersuchungen sollen eine Vorstellung vom zeitlichen und räumlichen Ablauf der Grauwackenschüttung liefern, die wiederum Rückschlüsse auf die o. g. Fragen ermöglicht.

Zusammenfassend formuliert lautet die Problemstellung: In welcher Weise wird der devonische Geosynklinalraum gegen Ende der geosynklinalen Entwicklung im Karbon in ein Flyschbecken umgewandelt?

C. GRUNDLAGEN DER UNTERSUCHUNGEN

Dieser Abschnitt soll sowohl ein Bild des Kenntnisstandes vor Beginn der Untersuchungen geben, als auch eigene Beobachtungen zu den petrographisch-sedimentologischen und stratigraphischen Arbeitsgrundlagen vermitteln.

1. Erforschungsgeschichte

Von Schneider stammt auch die Vorstellung, daß die Grauwacken "in Form von dachziegelartig sich überschneidenden Vorschüttungslinien" sedimentiert wurden. Er nimmt ein Fortschreiten der Schüttung von SE nach NW an, während Autoren vor und nach ihm eine Sedimentationsrichtung generell von SW nach NE nachweisen

2. Die Gesteine des Unterkarbon II und III

Die überwiegend politische Fazies des Unterkarbon vor dem Einsetzen der Grauwackenschüttung gliedert sich in die Kulm-Kieselschiefer und die darüber folgenden Kulmtonschiefer. Beide Schichtglieder werden zusammen mit dem sie unterlagernden Devon im Folgenden auch als Prae-Flysch bezeichnet (dazu Tab. 1).

![Tab. 1: Stratigraphische Gliederung des Arbeitsgebietes](image)

<table>
<thead>
<tr>
<th>Ober. Karbon</th>
<th>Namur-Grauwacke</th>
<th>FLYSCH - Ph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Kulm-Grauwacke</td>
<td></td>
</tr>
<tr>
<td>sp</td>
<td>(Wechsellagerung)</td>
<td></td>
</tr>
<tr>
<td>mu</td>
<td>Kulm-Tonschiefer</td>
<td></td>
</tr>
<tr>
<td>el</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>str</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkarbon</th>
<th>FLAE-FLIESCH - Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkarbon</th>
<th>FLAE-FLIESCH - Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterkarbon</th>
<th>FLAE-FLIESCH - Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Devon</th>
<th>FLAE-FLIESCH - Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>do</td>
<td>Tonschiefer, Cephalopoden-u. Riff-Kalkes</td>
</tr>
<tr>
<td>dm</td>
<td>"Hangenberg"-Schiefer</td>
</tr>
</tbody>
</table>

a. Petrographie der Grauwackenfolge

Innerhalb der Grauwackenfolge lassen sich nach Bankmächtigkeit, Korngrößenspektrum und Sedimentstrukturen verschiedene Ausbildungen von Grauwacken typisieren. Es werden im folgenden unterschieden:

- **Dickbankige (derbe) Grauwacken:** Bankmächtigkeiten (BM) zwischen 2 und 10 m, meist makroskopisch sichtbar gradiert, maximale Korngröße an der Basis (MKB) meist größer als 2 mm (bis 10 mm, dann konglomeratisch genannt). Schiefermittel geringmächtig oder fehlend.

- **Mittelbankige Grauwacken:** BM zwischen 0,5 und 2 m, gradiert, MKB meist 1-2 mm, Schiefermittel meist vorhanden.
Abb 3: Grauwacken - Typen und ihre vermutete Einordnung in einen idealisierten Grauwacke-Schüttungskörper

Main greywacke types and their suggested position in an idealized deposition unit
Grauwackenschiefer: Stark tonige, oft mit größeren Körnern durchmischte und feingeschichtete Grauwacke, meist reich an Pflanzenhäckseln, tritt gelegentlich im oberen Teil bankiger Grauwacken (s.o.) auf.

Wechselflagerung: BM zwischen 0,03 und 0,25 m, Gradierung wegen eines geringen oder makroskopisch nicht mehr erkennbaren Korngrößenspektrums meist nicht zu beobachten, MKB 1 mm, meist aber darunter (Feinsand- bis Siltbereich), überwiegend im unteren Teil Parallelschichtung, im oberen Schrägschichtung, häufig convolute bedding, unterscheidet sich von dünnbankigen Grauwacken durch den höheren und regelmäßigeren Anteil von Schiefermörteln (Verhältnis Grauwacke/Schiefer bis 1/1).

Sandlagige Schiefer: BM zwischen 1 und 3 cm, meist schrägschichtet, feinsandig, oft convolute lamination, Oberseite oft mit Rippeln.

Sandstreifige Schiefer: Meist siltige Tonschiefer mit Feinsandinschaltungen zwischen 1 und 10 mm.

Sandlagige und sandstreifige Schiefer treten sowohl als mehrere m mächtige Horizonte zwi schen bankigen Grauwacken, als auch im Verband mit Wechselflagerung auf.

b. Sedimentationsmechanismus der Grauwacken

3. Die Faunenführung im Unterkarbon

Der im Arbeitsgebiet aufgeschlossene Schichtverband kann nach der 1925 von H. SCHMIDT aufgestellten Goniatiten-Chronologie gegliedert werden. Das in diesem Zusammenhang besonders interessierende Unterkarbon wird in drei Stufen unterteilt (Tab 3). Während aus den Unterkarbonstufen I und II keine neuen Goniatitenfunde vorliegen, sind im Unterkarbon III die Goniatiten neben der Begleitaufnaum weitlauf häufigsten Fossilien. Ihre phylogenetische Entwicklung bildet die Grundlage für eine Stratigraphie des Untersuchungsgebietes.

Auch der Erhaltungszustand der Funde (meist flach gedrückt, nur selten körperlich) läßt oft eine eindeutige Zuordnung nicht zu. Einige Beispiele sollen im Folgenden die Schwierigkeiten bei den Datierungen der Schichtfolge erläutern.

nung von Neogl. spirale (PHILL.) und Neogl. subc. subcirculare (MILL.) ist ebenfalls nicht immer sicher
durchzuführen. Da außerdem Gon. granosus nach FIGGE erst höher im cu III gamma einsetzt, muß für die
Grenzziehung zwischen beta und gamma die Actinopteria-Bank (s. u.) herangezogen werden. Eine Unter-
scheidung der Actinopteria-Bank von der stratigraphisch wenig tiefer vorkommenden Streblochondria-Bank
(s. u.) ist im Gelände wegen des geringen Fundmaterials meist nicht möglich. Als weitere Leibbänke tre-
- ten im Untercarbon III alpha des Untersuchungsgebietes die Bank mit Entogonites grimmeri KITTL (cu III
alpha 1) und die crenistria-Kalkbänke (cu III alpha 3/4) auf. Letztere wird nach WEIGELT (1916) im Harz
als Grenzkalk bezeichnet.

b. Begleitfauna

Neben den Goniatiten kommen in geringerem Maße auch Muscheln, Brachiopoden, Crinoidenstielglieder,
Einzelkorallen, Trilobiten und orthocone Cephalopoden als Begleitfauna vor.

Die Cephalopoden haben ihr häufigstes Vorkommen in den nur 1 - 2 mm dünnten schwarzen Lagen der Ton-
schiefer, die die am wenigsten durch turbiditischen (?) Feindetritus beeinflußte Sedimentation darstellen.
Die Begleitfauna ist an Feinsandlagen, die durch den Schalendetritus dann leicht karbonatisch sind, gebun-
den und wahrscheinlich aus flacheren Bereichen in das Grauwacken-Becken eingeschwemmt.

Stratigraphisch wichtig sind die Bänke mit den Muscheln Actinopteria persulcata McCOY und Streb-
lochondria grandaeva (GOLDF.) Sie sind beide im Steinbruch im Großen Steinkartal aufgeschlossen und
werden dort durch eine Zwischenschaltung von etwa 35 m Grauwacken getrennt (FIGGE 1964). Beide Bänke
treten nach KULICK (1960) auch in den Kulmonenhäusern am Ostrand des Rheinischen Schiefergebirges
auf und werden dort nur durch 30 - 180 cm Sediment getrennt. Dieser krasses Unterschied zeigt gut die
Aufblähung der normalen politischen Beckensedimentation durch die Grauwacken.

Die wenigen Trilobiten, die aus dem Bereich der spirale-Subzone aufgesammelt werden konnten (siehe
Liste der Goniatiten-Fundpunkte) gehören nach der freundlichen brieflichen Mitteilung von Herrn
C. BRAUCKMANN, Berlin ausnahmslos zur für die striatus-Zone leitenden Art Archegonus (Phillobole)
moravicus (PRIBYL 1950).

Der Fossilinhalt der Konglomerate, von MEMPEL (1933) ausführlich beschrieben, zeigt immer wieder
Reste von unterkarbonischen Flachwasserbewohnern (Crinoiden, Brachiopoden, Lamellibranchiaten und
Gastropoden). Besonders bekannt geworden ist die reiche Flachwasserfauna des Kaltenborn, die von
HUFFNER (1914) beschrieben worden ist. Er beschreibt das Vorkommen als eine Schieferlinse innerhalb
einer Konglomeratzone. Das Vorkommen gehört nach den Überlegungen im Querprofil 1 der oberen spirale-
Subzone an. Die Schiefer sollen eine Mächtigkeit von 4 m haben. Da der Aufschluß nicht mehr aufzu-
finden ist, kann nicht beurteilt werden, ob das Vorkommen autochthon ist oder als Einschluß des Konglo-
merats allochthon ist. Das Konglomerat von Kaltenborn mit seiner Brachiopoden-Fauna ist vergleichbar
mit dem Kohlenkalk von Schreufa (PAPROTH 1953). Auch bei ihm ist, bei einer Lage innerhalb des
spirale-Konglomerats, das autochthone Vorkommen nicht erwiesen.

c. Spurenfauna

Bei der intensiven Suche nach Goniatitenfundpunkten konnten auch eine ganze Reihe Beobachtungen zur
Spurenfauna gemacht werden. Da die Spurenfossilien einen Beitrag zur Bathymetrie des Ablagerungs-
raumes liefern können (SEILACHER 1967), soll ihr Vorkommen kurz geschildert werden.

II. BEOBACHTUNGEN

A. STRATIGRAPHISCHER TEIL

1. Einleitung

2. Beschreibung der Profile in der kieselig-tonigen Fazies (vgl. dazu Abb. 4)

a. Profile entlang des Oberharzer Diabaszuges

Die Ausbildung der Kulmkiekelschiefer und Kulmtonschiefer entlang des Oberharzer Diabaszuges ist bereits durch die Profile verschiedener Autoren eingehend beschrieben worden.
JORDAN 1963 (Lattenbusch),
KULLMANN & MEYER 1963 (Lerbach),
Saeed 1969 (Dürrenkopf, Neue Harzstraße),
KULLMANN & MEYER 1963 (Huttal),
v. STRAATEN 1969 (Huttal),
MEISCHNER & SCHNEIDER 1970 (Huttal)
v. GROOTE-BIDLINGMAIER 1970 (Altenau, Ochsenberg) NE-Teil

SW-Teil (Profil Lerbach)
Sowohl im Bereich eines mächtigen, schiefrigen Oberdevons, als auch in dem mit kondensiertem Oberdevon, ist eine ähnliche Ausbildung der Kieselschiefer zu beobachten. Sie erreichen eine Mächtigkeit von etwa 20 m und sind dabei in einen geringen mächtigen dunklen Teil (Lydite), liegend und in einen mächtigeren, oft bunten Teil im Hangen (Adinole) gegliedert. Ihr Liegenden wird durch die mächtige Diabaserfüllung fassenden Liegenden Alauschiefer und die grünlich-grauen Schiefer der Devon-Karbonbahn gebildet. Während für die Alauschiefer ein cu II Alpha-Alter nachgewiesen werden konnte, sind die Kieselgesteine im Hangenden in das cu II Beta/Gamma eingestuft (Saeed 1969).

Darauf folgen in allen Profilen Alauschiefer, die durch Funde von Ectognites grimmert (Kittl) dem cu I alpha 1 zuzurechnen sind KULLMANN & MEYER (1963). Nach etwa 50-60 m grauer, mehr fein silt- und schwarzgebasteter Tonschiefer setzt dann eine Wechsllagerung (siehe S.) ein, die wahrscheinlich bis in das höhere cu III alpha bis tiefe beta reicht.

Mittl. Teil (Profil Huttalcher Bachgräse)

NE-Teil (Profil Altenau)

b. Profile am SE-Rand des Oberharzer Devonsattels

Da die mächtigen Grauwancken in ihrem Hangenden der elegans-Subzone angehören, umfassen die Kulmtonschiefer auch noch die falcatus-Subzone. BÄSSLER gibt für sie eine Mächtigkeit zwischen 60 und 180 m an. Südlich vom Langen Tal-Sattel fehlen die elegans-Grauwancken im Hangenden der Kulmtonschiefer. Gründe dafür werden weiter unten diskutiert.

c. Profile westlich des Oberharzer Devonsattels

Bei den aufgenommenen Profilen handelt es sich um Weganschnitte. Der Nullpunkt der Profilmeterzählung (Wege-Meter) ist jeweils die erste bankige Grauwacke über den Kulmtonschiefern.

Gr. Hühnertal

Das Unterkarbon beginnt in diesem Wegoprofil am Südhang des Gr. Hühnertales über einem kondensierten Oberdevon mit 2,5 m hellgrauen Schiefern. Sie sind relativ reich an Conodonten und haben in ihrem hangenden Teil, wo sich erste Alamschieferlagen einschalten. Pseudopolygnathus triangula inaequalis geliefert (Probe 67). Sie gehören demnach der Gottendorfia-Stufe an. Es folgen zum Hangenden etwa 1,5 m Alamschiefer, bis die ersten Bänke der Kieselschiefer einsetzen. Sie sind nur unzureichend aufgeschlossen und erreichen im Profil eine Mächtigkeit von annähernd 35 m.

An der Grenze Kulkieselschiefer- Kulmtonschiefer konnten geringmächtige Alamschiefer (m 77) aufgeschüttet werden, die nach dem Fund eines striatien Goniatiten (R34/3) in das cu III alpha oder tiefste cu III beta eingestuft werden können.

Darüber folgen mit 60 m Mächtigkeit die Kulmtonschiefer. Ihre liegenden 10 m bestehen aus graugrünlichen, feingebänderten Schiefern, die nur sehr selten feine Sillagen führen. In ihnen wurde bei Profilmeter 64 ein Gon. str. falciatus ROEM. gefunden (R34/4). Bei Profilmeter 58 stehen graugrüne Schiefer an, die reich an bis zu 10 mm dicken Felsanschlägen sind. Im Hangenden dieser Schiefer, die eine Rippe im Weganschnitt bilden, konnte bei Profilmeter 52 ein Gon. str. c. elegans gefunden werden (R34/3). Es ist zu vermuten, daß die fäd.-streifigen Schiefer ein Äquivalent der elegans-Grauwancken des Gebiets südlich davon darstellen.

Es folgen im Profil bis zu der ersten Grauwackenhank 42 m Schiefer, die neben schwarzen Lagen auch Silt- bis Fad. - Lagen einer Dicke bis max. 5 mm führen. Zwischen Profilmeter 14 und 20 fanden sich Gon. str. sphaericostriatus BISAT und macronus (KNOPP) (R34/1). Sie zeigen, daß die Schiefer dem unteren bis mittleren Teil der macronatus-Subzone angehören.

Eine ähnliche Fauna konnte in einem temporären Aufschluß in Hahnklee (R 48) gefunden werden. Etwa 100 m im Hangenden dieses Aufschlusses fand sich der erste Neogl. spirale (R 42). Die Grenze zwischen macronatus- und spirale-Subzone scheint im Gebiet von Hahnklee in den liegendsten Partien der Grauwacken zu liegen.

Mittleres Murttal

Abb. 4: Profile im Unterkarbon II und III des Oberharzes (Praeflysch - Phase)

Etwa 3 m im Hangenden der Grenzkalkte, bei Profilimeter 87, beginnen die Kulmtonschiefer. Sie bestehen in ihren basalen 9-10 m überwiegend aus graublauen, feingebänderten Tonschiefern, die oft kieselig hart sind und Rippen im Verwitterungsprofil bilden. In diesem Teil der Kulmtonschiefer sind auch noch kollige Kalk- bänken und oft verdichtete Lagen häufig. Biostratigraphisch gehören die Schiefer dem Zeitraum vom obersten cu III alpha (m87) bis cu III beta falcatus (m69) an.

Im Hangenden der Grauwacken folgen noch 22,5 m Tonschiefer, die zum Hangenden immer rauher und reicher an Silt-Fas.-Lagen werden. Die basalen 2 m dieser Schiefer sind noch feingebändert und kieselig-hart. In den oberen siltigen Tonschiefern treten noch einige carbionatiske Knollenlagen auf. Die Schiefer gehören nach mehreren Fossilfundpunkten der macrourus-Subzone an.

Teufelsberg-Schlaackental

In einem Wegprofil im Schlaackental an Süßfuß des Teufelsberges sind die Kulm kieselschiefer und die Kulm tonschiefer in voller Mächtigkeit aufgeschlossen. Das Liegende der Kieselschiefer ist an einem weiteren Wegprofil oberhalb des Tales besser aufgeschlossen.

Über hellgrauen, dem obersten Oberdevon und der Gattendorf-Stufe des Unterkarbons angehörenden Schiefern folgen die Liegenden Alauschiefer, die dem obersten cu I bis cu II alpha angehören (P. 58). Nach wenigen m schwarzem, stumpfer Schiefer setzen die ersten Lyditbänke ein. Die Lydite im Schlaackental haben etwa eine Mächtigkeit von 40 - 50 m. Sie enthalten in ihrem mittleren Teil eine 0,3 m dicke Grauwackenbank (m140). Die Lydite reichen im Profil bis m 78.

Es folgen bis Profilmeter 38 zunächst hellgraue, dicke Kieselbänke, dann kieselige Schiefer und schließlich überwiegend kieselige Alauschiefer. Die Mächtigkeit dieses Profilabschnittes beträgt etwa 20 m.

Über den Alauschiefern folgen die drei "Grenzkalk"-Bänke. Goniatitenfossilien aus dem Hangenden (R18/1) rechtfertigen auch hier eine Einstufung der Kalke in das cu III alpha 3-4.

Es folgen im Profil grünlichgraue Schiefer mit einer abnehmenden schwarzen Bänderung. Sie enthalten einige verwitterte Kalkbänken und tuffverdichtete Lagen (m37). Bei Profilmeter 34 setzen harte, grünlich-graublaue Schiefer ein. Sie sind in ihrem unteren Teil diffus schwarz gestreift und gehören nach Goniatitenfossilien (R18/3 und 4) der falcatus-Subzone an. Im oberen Teil setzen die ersten dünnen Siltlagen ein. Hier wurde ein Gen. str. elegans BISAT gefunden (R18/6). Die dicke der Lagen nimmt bis m 30 auf 2-3 mm zu. In diesem Profilteil treten noch einmal kalkge Einschaltungen in der Form dreier dicht beieinander liegender Kalkbänkchen auf. In den
nicht aufgeschlossenen Profilschnitt von m20 bis m8 kann man an Lesesteinen sehen, daß die hier grau-
blauen Schiefer rauher sind und die Dickc und Zahl der Feinsandbänder zuminnt. In diesem Bereich ist
also die Grenze ecleans-mucronatus-Subzone zu vermuten.

Es ist zu beobachten, daß ab Profilometer 20 die Schiefer zunehmend fossilärmser werden. Wärend sich
im Hangenden der Fossilinhalt auf die schwarzen Bänder und die teilweise wegen Fossilidetrurus carbonati-
ischen Feinsandbänder beschränkt, sind im Liegenden alle Partien der Schiefer fossilführend.

Bei Profilmeter 4 schaltet sich die erste dünne Grauwackebank in die Kulimonschiefer ein. Goniatittenfunde
zigen einen mucronatus-Alter an (R19/1 und 2). Zwischen den ersten Grauwacken sind immer wieder mäch-
tigere Schieferhorizonte eingeschaltet. Etwa 60 m im Hangenden der Kulimonschieder tritt der erste Neogl.
spirale auf (R19/3). Da die dazwischen liegenden Schichten nicht aufgeschlossen sind, kann die spirale-
subzone auch schon früher einsetzen. Es lägen dann ähnliche Verhältnisse wie im Murrtal vor.

Die Grauwackenfolge unmittelbar über den Kulimonschiefern ist noch reich an bis zu mehreren dm mäch-
tigen Tonschiefermiteln. Paralleleprofile in der Nähe (Osthang des Gr. Trogtaler Berges und im Rosental)
zigen eine sehr ähnliche Ausbildung.

Tränketal

Das Profil liegt am NW-Hang des Tränketales oberhalb des Diabas-Steinbruches. Da es sich um einen
leichten und langen, stellensteigenden Weganschnitt handelt, sind die Mächtigkeiten nur unge nau anzu-
geben.

Das Profil beginnt am Steinbruch, wo etwa an der Grenze liegende Alauschiesiever-Lydite ein grobkörniger
Diabas intrudiert ist. Die dickbankigen Kieselgesteine, deren Mächtigkeit nur sehr ungenau mit etwa 40 m
gegeben werden können, enthalten am gegenüberliegenden Hang eine 0,4 m dicke Grauwackenbank. Das
eigentliche Wegprofil beginnt mit hohen Wetzschiefen und kieseligen Alauschiesiever, die bei m 107 einen
Goniatiten der crenistra-Gruppe geliefert haben (R66/1). Ein Lesestein des Grenzkalkes zeigt, daß auch
er im Profil vorhanden sein muß.

Es folgen zum Hangenden dunkle, gebänderte Tonschiefer, die nach Goniatittenfunden bei m 68 und m 55
der falcatus- und elegans-Subzone angehören (R66/2 und 3). Ab Profilometer 50 werden die Schiefer grau-
blau und dünnplattig und bei m 45, dem ersten mucronatus-Fundpunkt (R56/4), schalten sich auch dünne
Siltlagen ein. Bei m 35, noch mindestens 15 m im Liegenden der Grauwacken, tritt der erste Neogl.
spirale (PHIL.) auf (R66/5). Die restlichen Kulumonschiefer sind graublaug und siltstreifig mit einem
zunehmenden Anteil an dünnen Grauwackenbänken (Wechsellagerung) im hangendsten Teil. Die Mäch-
tigkeit der reinen Kulimonschiefer mag im Tränketal bei vielleicht 30 m liegen.

Bemerkenswert in diesem Profil ist das Einsetzen der Grauwicken innerhalb der spirale-Subzone. Ein
Profil in der streckenden Verlängerung des Tränketal-Satts im Kl. Trogtal zeigt ähnliche Verhältnisse
(R13).

Junkernberg

Der liegende Teil dieses Profils, der im ehemaligen Diabassteinbruch aufgeschlossen ist, ist bereits von

Es beginnt mit einer Folge hellgrauber, Kalknollen-Lagen führender Schiefe, die im Steinbruch mit 8 m
Mächtigkeit aufgeschlossen ist. Während die liegenden 3 m mit geringer Wahrscheinlichkeit der Dasberg-
und Wockum-Stufe des Oberdevons angehören, konnten die hangenden 3 m mit Sicherheit in das tiefste
Unterkarbon eingestuft werden (STOPPEL & ZSCHEKED 1971). Über den gering-
mächtigen Alauschiesiever in die ein etwa 20 m mächtiger Intrusivdiabas eingeschaltet ist. Darüber folgen
etwa 35 m Lydite, in die rasch auskellende Grauwackenbänke eingelagert sind.

Die Grenze der Lydite gegen die Adinole ist im Wegprofil aufgeschlossen. Etwa an der Grenze sind zwei
ünne Grauwackenbänke in die Kieselfolge eingeschaltet. Die Adinole haben eine geschätzte Mächtigkeit
von etwa 15 m. Der Anteil an hellen, tuffverdichteten Einschaltungen ist groß. Etwa 6 m im Liegenden
der Grenzkalk (crenistra-Kalk) setzen die ersten Alauschiesieverlagen ein, die dann zum Hangenden immer
häufiger werden (m 68 - m 50). Über den Kalken, von denen hier nur eine Bank aufgefunden werden
konnte, folgt noch 1 m Alauschiesiever. Etwa 1,5 m über den Kalken (m 46) wurde in harten, helldunkel
gestreiften Schiefern neben einem striaten Goniatitenrest auch ein Arkhegnum (Ph.) moravicus (PRIBYL
1950) (det. BRAUCKMANN) gefunden (R33/7). Beide Funde in dieser Position sprechen für die Grenzbe-
reich zu III alpha-beta. In diesem Bereich kommen auch noch harte, karbonatisch Bänke und tuffver-
dichtete Lagen vor.
3. Die Grauwacken des Iberger Riffes

Im südwestlichen Teil des alten Steinbruchs am Iberg ist eine etwa 3 m mächtige Folge von Grauwacken, Siltsteinen und Schiefern aufgeschlossen. Sie läßt sich entlang eines Werkstraßenschnittes bis an die Bundesstraße nordöstlich des Hübbichsteines und in einem Höhlweg des Hüppeltales verfolgen (Abb. 5).

Die Schichtfolge im alten Steinbruch schmiegt sich konkordant an die mit etwa 50° nach Westen einfallenden Riffflanken an. Sämtliche Klastika dieser Folge, im Steinbruch wie an der Straße, sind reich an Muscheln, die den Aviculiden und Prothyris sp. zuzuordnen sind. Die Schiefer und Grauwacken an der Oberkante des alten Steinbruchs verziehen sich in Richtung auf den Riffkern mit tonigen, stark bituminösen Kalkbänken von 10 bis 30 cm Dicke. Das aufgenommene Profil zeigt eine Folge von kompakten Kalkbänken mit dünner Schiefermitten auf einem Höcker der Riffflanke. Der koloniale Kalk im unteren Teil der Folge enthält neben den o. g. Muscheln auch zweiklappig erhaltene rhyzonoellide Brachiopoden. An der Basis der klastisch-karbonatischen Folge wird ein in einer Spalte des Riffkalkes eingelagertes oolithisches Kalk von Schiefern und Grauwacken abgeschnitten und überlagert (B5b).

4. Querprofile durch die Grauwackenfolge

Im Verlauf der Geländetätigkeit konnten insgesamt 12 Querprofile aufgenommen werden, die in parallelen Abständen von 1-3 km den Faltenbau und die Stratigraphie der Oberharzer Kulmgrauwacken zeigen. Dabei konnte zum Teil auf die Profilaufnahmen der Göttinger Harz-Diplomarbeiten und die Aufnahmen von FIGGE (1964) zurückgegriffen werden. Im folgenden soll kurz der geographische Verlauf der Querprofile skizziert werden (Abb. 6).

Profil 1: Diabaszug nördlich Lerbach - Innerste Tal - Eichelberg - Bad Grund - Tal der Markau
Profil 2: Universitätsgelände Clausthal - Frankenschammühle - Innerste Tal - Wildemann - Pferdekopf
Profil 4: Langental - Stadtwege Teich - Spiegelatal - Rabental - Grumbachtal - Hölztal
Profil 5: Spiegelatal - Adlersberg - Innerste Tal - Gr. Brombergskopf - Neckelnberg - Schildauatal
Profil 6: Diabaszug nördlich Altenau - Okertalsperre - Dietrichsberg - Riesenbachtal - Oberharzer Devonsattel
Profil 7: Diabaszug westlich Altenau - Hellertal - Langetal - Schalktal - Ober Schulenberg - Zankwieser Teich
Profil 8: Bockswiese - Grumbacher Teich
Profil 9: Gr. Hähnertal - Hahnenklee - Mittl. Murtal
Profil 10: Schlackental - Sternplatz - Tränketal - Schmahlenberg - Sandberg - Westl. Harzrand
Profil 11: Steigertal - Kalte Birke - Gr. Krautlieb - Gläsener - Nordwestlicher Harzrand
Profil 12: Steile Lieth - Sangenberg - Gr. Steinkehrbachtal - Sprengelsberg - Nördlicher Harzrand

Abb. 6: Lage der Querprofile und Steinbrüche

Location of tectonic cross-sections and greywacke quarries

S. Seesen
G. Goslar
C. Clausthal-Zellerfeld
O. Osterode
A. Altenau
L. Lautenthal
W. Wildemann
B. Bad Grund
Im überwiegenden Teil des Arbeitsgebietes herrscht ein NW-vergelter Großfaltenbau vor. Nur in den leicht faltbaren Serien des Okergebietes ist ein stark durch streichende Störungen gestörter Kleinfaltenbau zu beobachten. Gebiete für die ein steller Schuppenbau vermutet werden kann beschränken sich auf einen schmalen Streifen nördlich des Diabazzuges und auf die Tonschiefer im Liegenden der elegante-Grauwacke östlich Clausthal.

Die Großätte in der Grauwacke haben steile bis überkippte N-Flügel, deren Mächtigkeit mehrere 100 m erreichen kann. Die flachen Flügel dieser Großätte sind meist im 100 m-Maßstab kleingefaltet. Sie können aber auch nur flachgewellt sein wie zum Beispiel das Iberg-Gewölbe. Die Länge der flachen Flügel beträgt zwischen 1000 und 1500 m.

Der Faltenstieg taucht zunächst vom Diabazzug flach nach NW ab, wird am muconatus-Großätte treppenförmig abgesenkt und steigt dann bis zum Iberg-Gewölbe flach an. An der Nordseite des Gewölbes wird er noch einmal treppenförmig abgesenkt (etwa 500 m gemessen an der beta/gamma-Grenze) um dann nach NW flach abzutauchen. Nördlich des Lautenthaler Ganges taucht er dann steil ab, so daß am nordwestlichen Harzrand gerade noch das unterste Oberkarbon aufgeschlossen ist.

Profil 1

Die besten Aufschlüsse in der macronautus Grauwacke bieten die Steinbrüche an der Unteren Innerste. Grobkörnige (2-5 mm) und dickbankige (meist gr. 1 m) Grauwacken bilden hier den Hauptanteil der Schichtfolge. Die Abgrenzung der macronautus-Subzone zur hangenden spirale-Subzone ist wegen des Fehlens von Neogl. spirale (PHILL.) in diesem Profil nicht möglich.

Die Wechsellagerung des Kreuzberges (Höhe 598,4 m) die nach einem kleineren Sattel auf den Großsattel des Paulwassers folgt, kann nur in Analogie zum Profil 2 (Pferdekoepf) und zum Profil von JORDAN (s. u.) in das spirale-Niveau gestellt werden. Die macronautus-Subzone würde dann im Bereich der Unteren Innerste eine Mächtigkeit von etwa 600 m haben. Die o.g. Wechsellagerung besteht neben dünnbankigen, feinkörnigen Grauwacken zum überwiegenden Teil aus sandgebänderten Schiefern. Sie wird von grobkörnigen, dickbankigen Grauwacken unterlagert und hat etwa eine Mächtigkeit von 70 m.

Die Basisgrauwacken der macronautus-Subzone haben in seinem Profil eine Mindestmächtigkeit von 300 m. Weniger als 100 m darüber folgt schon die Wechsellagerung der spirale-Subzone. Da aus den Profilen im nördlichen Teil des Arbeitsgebietes hinreichend sicher bekannt ist, daß die o.g. Wechsellagerung im oberen Teil der Subzone vorkommt, ist der untere Teil der Subzone entweder geringmächtig oder an einer streichenden Störung unterdrückt.

Auf einen langen flachen Flügel folgt im Bereich des Schachts Wohmannsbuch wieder ein Großsattel, der die streichende Verlängerung des Jung'schen Sattels im innerstetales (Profil 2) darstellt. Hier stößt das Profil an den Silbermaaler Gang. An ihm ist die Süd-Scholle um 400 m gehoben und um fast 500 m nach Westen versetzt. Im Kern des Sattels streicht die Leitschichten-Partie überwiegend aus.

Das Querprofil zwischen dem Silbermaaler Gang im Süden und dem Rosenhöfer Gang im Norden beginnt am Sattel des Taternplatzes, der die streichende Verlängerung des Jung'schen Sattels nach SW darstellt. Aus seinem Sattelkern liegt ein Fund von Gon. murocratus (KNOPPP) vor (F23). Nach dem Profil im Liegenden des Silbermaaler Ganges zu urteilen liegt der Fundpunkt etwa 300 m im Hangenden der Leitschichten-Partie, also in einem Niveau für das ein spirale-Alter wahrscheinlich ist.

Diese Serie aus Grauwackenhorizonten und Wechsellagerung wird im Markautal von steil NW-fallenden, d.h. Grauwacken mit konglomeratischen Anteilen überlagert. Im Hangenden des ersten konglomeratischen Horizontes konnte die Actinopteris-Bank (R70) gefunden werden. Etwa 200 m weiter im Hangenden, über einen zweiten Konglomerat trat der erste Gon. granosus PORTLOCK auf (F4).

Eine nach ihrer Konsequenz für die Mächtigkeit der spirale Subzone wahrscheinlichere Vermutung besteht darin, in der Leitschichtenpartie des Westfeldes die spirale-Wechsellagerung des Kreuz-Berges (Höhe 598, 4) bzw. des Kellers (siehe Profil 2) wiederzufinden. Auch der petrographische Aufbau spricht für diese Annahme: Alle drei Schichtfolgen zeigen in ihrem untersten Teil eine Einschaltung konglomeratischer Grauwacken. Auch der spirale-Wechsellagerung im Querprofil von JORDAN zeigt einen ähnlichen Auflieg.
Profil 2

Das folgende Querprofil beginnt im Clausthaler Universitätsgelände mit einer steil überkippten Grauwackenfolge, die eine Mächtigkeit zwischen 200 und 300 m hat. Sie hat mucronatus-Alter und ist im Süden von elegans-Tonschiefer unterlagert (R43/1 und 2). Sie besteht, sofern die wenigen aufgeschlossenen Bau- gruppen eine Aussage möglichen, aus mittel- bis grobkörnigen Grauwackenbanken, deren Dicken zwischen 0,5 und 2 m liegen. Der Anteil der Schiefermörte ist gering. Zum Hangenden geht die Grauwacke in eine Wechsellagerung über.

Südöstlich des Universitätsgeländes sind die Aufschüttverhältnisse sehr schlecht; lediglich östlich des Müllens-Berges treten konkomergische Leseente der elegans-Grauwacken auf. Im südlichen Stadtbereich Clausthal wird das Profil wegen fehlender Aufschlüsse und durch den Verlauf des Rosenbächle Ganges unsicher. Oberflächenkarten orientieren deuten darauf hin, daß die Südscholle am Gang relativ gehoben ist, da die Aussichtbreite der Mulde in diesem Gebiet südlich des Ganges bedeutend schmaler ist.

Für den Fall, daß Teile der Leitschichtenpartie bzw. der Jung'schen Tonschiefer im hangenden Teil der mucronatus-Grauwacke identisch ist, muß mit einer Aufschüttung der mucronatus-Grauwacken auf die Wechsellagerung der spirale-Subzone gerechnet werden.

Am Nordhang des Decher-Berges, dort wo die flache Lagerung in eine steile übergeht, schaltet sich eine etwa 100 m mächtige schiefwellige Wechsellagerung in die Grauwacken ein. Sie wird von einer etwa 300 m mächtigen Folge aus schiefwelligen Wechsellagerungen mit Grauwackenpaketen, die am SW-Hang des Pferdekopfes aufgeschlossen ist, überlagert. Zum Hangenden folgen Konglomerate, bei denen bereits Gon. gran. densus PORTLOCK (R63) gefunden wurde. Da dieser Goniatit erst etwas höher im Cu III gamma 1 auftritt (FIGGE 1964), ist die Grenze spirale-Subzone gegen das cu III gamma 1 mit den Actinopteris-Bänken im Liegenden der Konglomerate anzunehmen.

Die o.g. schiefwellige Wechsellagerung ist mit Gon. mucronatus (KNOPP) (F6, R68) datiert, ein spirale-Alter ist aber nicht auszuschließen. Der etwaige Jung scheine Schiefer (Gallen-Berg, Decher-Berg) mit einem sicheren mucronatus-Alter liegt vom Profil durch Trümmer des Hütschentaler und des Haus Dithfurter Ganges abgetrennt unbekannte m im Liegenden der Wechsellagerung und kann deshalb im Querprofil nicht zu einer Aussage über die Mächtigkeit der spirale-Subzone herangezogen werden. Ein anderer Grund spricht aber für ein spirale-Alter der Schichten des Decher-Berges und des Pferdekopfes. Nördlich des Hütschentaler Ganges liegt die mu/spi-Grenze mehrere 100 m im Liegenden der charakteristischen Gesteinsfolge Wechsellagerung mit Konglomerat an der Basis, Grauwacken und Wechsellagerung und schließlich Grauwacken und Konglomerate mit der Grenze der spirale-Subzone gegen das cu III gamma 1.

Prof. 3

Im Bereich des ehemaligen Werk Tanne ist diese mehrere 100 m mächtige, wahrscheinlich in sich stell verschüpperte, Schieferfolge auf steilstehende, überkippte Grauwacken aufgeschoben. Sie gehören der elegans-Subzone an und erreichen im Streichen nach NE eine Mächtigkeit von fast 200 m. Nach NW folgt eine schlecht aufgeschlossene gefaltete Schieferfolge, die nach Goniatitfunden weiter im NE (Profil 4) der elegans-Subzone angehören müssen.

Profil 4

Sie liegen im Kern einer Großmuldenstruktur, deren kleingefalteter flacher Flügel sich vom Lange Teich bis zum Stadteweg Teich erstreckt. Er baut sich vorwiegend aus Tonschiefern der elegans-Subzone auf, in die der Sattel die dünndalkische Wechsellagerung eingeschaltet ist. Mächtigkeitsangaben sind hier wegen der nicht erfaßbaren Kleinfaltung nicht möglich. Die elegans-Grauwacken scheinen auf dem flachen Flügel schon zu fehlen. Eine Vertretung durch die in die Schiefer eingelegete Wechsellagerung ist wahrscheinlich.

In diesem Zusammenhang ist auch ein unveröffentlichter Bericht von STAHL (zitiert in VENZLAFF 1965) über das Profil des Haus Herzberger Schachtes zu nennen. Er steht auf dem o.g. langen, flachen Sattelflügel und hat bis 378 m Tiefe nur Tonschiefer und sandige Schiefer erbracht. Unter Berücksichtigung der Lagerung und der wahrscheinlichen Spezialpflege ergibt sich eine Mächtigkeit von vielleicht 250 m. Sie dürfte zum größten Teil der elegans-Subzone angehören, da in diesem Bereich ältere Subzonen mit Sicherheit schon durch geringmächtige Kulutschiefere vertreten sind. Nach der Oberflächenkartierung (VENZLAFF 1965) zu urteilen, beginnt das Schachtprofil im Liegenden der dünndalkischen Wechsellagerung, es durchsetzt also nur einen Teil der elegans-Subzone, deren Gesamtmächtigkeit damit größer als 300 m angenommen werden muß.

Im Kern des Pfistal-Sattels liegen sandsteifreiche Kulutschiefere, die zur mucronatus-Subzone gehörig datiert sind (R58). Nur etwa 100 m im Hangenden der Schiefer wurde in Grauwacken der erste Neogl. spirale (PHILL.) gefunden (R44). Das heißt, daß die mucronatus-Subzone in diesem Bereich durch Telle der Kulutschiefere und etwa 100 m Grauwacken aufgebaut wird. Im flachen Sattelflügel konnten keine weiteren spirale-Subzone Funde gemacht werden. Es ist daher auch nicht möglich, die Mächtigkeit der mucronatus-Grauwacken am Stadteweg Teich anzugeben. Sie dürfte aber noch geringer als im Gebiet von Clausral-Zellerfeld (400 m) und größer als im Pfistal (100 m) sein.

Auf den Pfistal-Sattel folgt nach einer scharfen Mulde der klein gefaltete flache Flügel des Rabental-Sattels. In seinem Kern treten wieder Kulutschiefere in einer Mächtigkeit von mindestens 100 m auf. Der Sattel zeigt ein starkes Achsenabtauchen nach SW, das bewirkt, daß die Kluenschiefere im Liegenden der Kulutschiefere nicht angeschnitten sind. Die Tonschiefer sind mit Gon. sphacelostriatus BISAT in den unteren Teil der mucronatus-Subzone eingestuft (C5). Wenige 10-er m im Hangenden der Tonschiefer konnten erste
undeutlich spiraligestreifte Goniolithenreste gefunden werden (R45). Sie legen die Vermutung nahe, daß auch hier die mucerinus-Grauwacken nur eine geringe Mächtigkeit (100 m?) haben.

Der Profilteil zwischen dem unteren Grumbach Tal und dem Hölltal zeigt den Abbau der Iberg-Gewölbestruktur nach NE. Die Breite des Gewölbes beträgt hier noch etwa 1,2 km. Die flache Lagerung der Schichten beginnt sich in einzelne Sattel und Mulden aufzulösen.

Profil 5

An der Georgenhöhe wird der steil-überkippten Flügel durch den Spiegelataler Gang abgeschnitten. Nach NW geht er nach einer stark gestörten Mulde in die gewölbeartige Sattelstruktur des Adlers-Berges. Sie hat hier östlich der innerste noch eine Breite von 1,4 km im Vergleich zu fast 2 km unmittelbar östlich des Berges. Im Kern des Großsattels sind in mehreren Steinbrüchen am Adlersberg fast 200 m Grauwacken- schichtfolge aufgeschlossen. Sie gehören dem unteren Teil der spirale-Subzone an (C 40), da die mucerinus-spirale-Grenze im liegendsten Teil der Schichtfolge liegt (C 40a). Charakteristisch für die Grauwacken ist ihr nur durch zwei mächtige Schieferhorizonte unterbrochener grobkristalliner Aufbau.

Wegaufschlüsse an Adlers-Berg am Hangenden der durch die Steinbrüche aufgeschlossenen Grauwacken zeigen neben kleineren Grauwackenzyklen noch einen mächtigeren Schieferhorizont am Top des Adlers-Berges und in seinem Hangenden, schon in steilen Flügel eine etwa 300 m mächtige Folge mittelbankiger Grauwacken. Erst dann folgt ein etwa 100 m mächtiger schiefereicher Wechselflagerungshorizont mit einer konglomeratischen Grauwacken an der Basis. Die Datierung der gesamten geschilderten Schichtenfolge ist durch Funde von Neogl. spirale (PHILLI) abgesichert (SCHNEIDER 1969, Seite 122).

Nach einer schiefereichen Grauwackenfolge beim Sägewerk Hütschental folgt im Hangenden eines Konglomerates die Grenze cu III bis vorbi spirolae gegen das gamma 1, die durch das Auftreten der Actinopteria-Bank (R30) angezeigt wird. Daraus ergibt sich für die spirale-Subzone östlich der innerste eine Mächtigkeit von 800 - 900 m. Die o.g. Schichtfolge in Liegenden der Actinopteria-Bänke ist direkt vergleichbar mit der Schichtfolge am Pferdekopf oder in der Weststrecke der Grebe Hilse Gottes. Es zeigen sich über eine Strecke von 5 km im Streichen keine signifikanten Änderungen im Schichtaufbau.

Nach dem Muldenkern mit der spirale gamma 1-Grenze erreicht die Profillinie mit dem Kulinensattel das Innerste Tal. Im Kern dieses in sich stark gestörten Sattels erscheint noch einmal die basale Wechselleagerung der charakteristischen beta/gamma-Grenzfolge.

Profil 6

Profil 7

Die nach NW folgende Schichtserie bis Oberschulenberg gehört nach einer Reihe von Fossillagen (V64, V73, R59) ebenfalls in die elegans-Subzone. Sie ist aus zwei, teilweise verschütteten Sattel-Mulden Strukturen aufgebaut, die eine sehr gute Übereinstimmung mit dem Profil im Lange Tal aufweisen. Die Schichtfolge bildet eine hauptsächlich aus sandreichen Tonschiefern auf, in die ganz untergeordnet wenige dünnbankige Wechselagen und einzelne bis 1 m dicke Grauwackenbinke eingelagerter sind. Sehr häufig sind in diesen Schiefert S-O-Röhrenbauten.

Bei Ober Schubenberg stößt die Tonschieferfolge vermutlich mit einer Aufschüttung an den Muldenkern eines Großsattels. In der Mulde ist gerade noch eine geringmächtige Wechselligung der muceratus-Subzone (V94) erhalten geblieben. Ihr Liegendes wird durch die Schiefer der elegans-Subzone im 1 km langen, kleingefalteten flachen Flügel des Großsattels gebildet. Im oberen Mertens- und Schwaner Tal ist die Schiefer folge jedoch schon einmal eine Wechselligung eingeschaltet, die wahrscheinlich ein Äquivalent der elegans-Grauwacken ist.

Profil 4

Nach NW, im Grumbach Tal, sind die Kulmtonschiefer in einer flachen Sattelaußwölbung noch einmal ange- schnitten, bevor sie unter den Grauwacken abtauchen, die hier nur, wahrscheinlich zu tief, mit einem muceratus-Alt (550) datiert werden konnten.

Profil 9 und 10

Der Oberdevon-Großsattel des Sterntplatzes liegt südlich des Lautenthaler Ganges seine Fortsetzung im Sattel des Brombergkogelses. Der horizontale Versatz am Gang beträgt für die Südscholle etwa 700 m nach Osten. Auf den Sterntplatz-Sattel folgt nach einem kleinen Sattel, in dessen Kern im Rosental Kieselschiefer anschnitten sind, der Sattel des Tränketales. Die Grauwacken auf seinem flachen Flügel sind, wie schon an anderen Stellen für dieses Niveau zu beobachten war, mit Con. mucronatus (KNOPP) zu tief eingestuht (R7, R9, R10).

Profil 11

Profil 12

Diese beiden Parallelprofile, von denen nur das westliche abgebildet ist, reichen vom Innerste Tal, wo die nördlichsten Aufschlüsse in Kulmtonschiefern liegen, bis in den steil-überkippten Flügel des Steinera Berg-Sattels.

Die Kulmtonschiefer des Papen Berges bzw. der Stellen Lieth sind nicht so gut aufgeschlossen um dort Datierungen durchzuführen. Stattdessen wurde zum Vergleich das Profil am Junkernberg herangezogen. Die Kulmtonschiefer, die dort von Kieselschiefern mit einem mächtigen Diabas an der Basis unterlagert werden, haben eine geringe Mächtigkeit von etwa 18 m. Schon in ihrem mittleren Teil tritt Neogl. spirale (PHILL.) auf (R33/5). Die Subzonen im Liegenden sind auf wenige m Mächtigkeit reduziert.
Die in den Querprofilen anschließenden Grauwacken liegen in einem nach NW abtauchenden Sattel überwiegend flachwellig gefaltet. Am Steinkrper bzw. Voßtalberg gehen sie in eine stelle Lagerung über. Im großen Steinbruch im Steinkrperbach Tal ist ca. 250 m im Hangenden von Konglomeraten innerhalb eines Ton- scheiferhorizontes die Actinopteria-Bank aufgeschlossen. Es folgen im Steinbruch auf etwa 300 m aufgeschlossen die Grauwacken des cu III gamma 1, in die sich noch zwei weitere Schieferhorizonte einschalten.

Der steile Flügel des Steinkrper Berg Sattels soll noch FIGGE eine Mächtigkeit von 1000 m haben. Das Liegende der Konglomerate ist in diesem Gebiet nirgendwo gut aufgeschlossen. So läßt es sich nicht beurteilen, ob im Liegenden der spirale gamma 1-Grenze eine ähnliche Wechsellagerungs- und Schieferfolge wie im Gebiet südl. des Lautenthaler Ganges auftritt.

Aus beiden Querprofilen ist für die Grauwacke der spirale-Subzone eine Mächtigkeit von etwa 700 - 800 m zu entnehmen. Da die Aufschlußverhältnisse im flachen Flügel des Steinkrper Berg Sattels sehr schlecht sind, wird die Mächtigkeit eher geringer sein.

Nordöstlich des Harz-Paläozoiks haben die Tiefbohrungen Hahndorf Z1 (nördlich Goslar) und Goslar Z1 in über 2000 m Teufe Grauwacken erreicht (MAHLZAHN 1970). In der Wechselsequenz von Ton- und Siltesteinen mit Grauwacken der Bohrung Hahndorf Z1 sind spiralgestreifte Gneislitzenreste gefunden worden, nach denen die Folge in das Unterkarbon III gamma 1 oder 2 gestellt wird.

5. Zusammenfassung

a. Das Unterkarbon II und III vor Beginn der Grauwackenschüttung (Praeflysch-Phase)

Der Zeitraum des cu III alpha bis tiefe beta kann wegen fehlender Goniolithenfunde nicht weiter aufgelöst werden. In einem schmalen Streifen entlang des Diabazzuges erstreckt sich eine etwa 100 m mächtige Folge von Grauwacken und Kongoglomeraten. Sie wird im SW von etwa 200 m Schiefere und Wechsellagerung im Hangenden der Kieselsteine unterlagert und taucht nach NW schnell unter jüngere Schichten ab.

Im Oker-Gebiet, wo eine unterlagernde Wechsellagerung zu fehlen scheint, gehen die Grauwacken lateral nach NW in Wechsellagerung und schließlich in Kulmitonschiefer über. Die Schichtfolge vom cu III alpha bis ins tiefe beta hat am Ostrand des Deventerbeins noch eine Mächtigkeit von mindestens 60 m.

Die Grauwacken im unteren Teil der elegans-Subzone haben im südlichsten Teil ihrer Verbreitung eine im Streichen wechselnde Mächtigkeit zwischen 100 und 150 m. Im SW-Teil des Arbeitsgebietes (Bornsberg) ist zu beobachten, wie die Grauwacken zum Hangenden durch Wechsellagerung und schließlich durch Tonschiefer ersetzt werden. Die gesamte Mächtigkeit der Subzone beträgt hier etwa 350 m. Weiter nach NW (Untere Innerste) sind die elegans-Grauwacken nicht mehr aufgeschlossen oder sie sind bereits in Wechsellagerung übergegangen. Die Mächtigkeit der Subzone beträgt hier noch mindestens 100 - 150 m.

Östlich Clausthal-Zellerfeld sind nordwestlich des durchstreichen Zuges der elegans-Grauwacken (Lange) Schiefere und Wechsellagerungen dieser Subzone aufgeschlossen. Sie dürfte in diesem Gebiet nicht wesentlich mächtiger als 300 m sein. Im Verlauf des Schalktales und des Hinterensteis (auch Mittl. Hasental) ist gut zu beobachten, wie Grauwacken innerhalb der elegans-Subzone immer seltener werden und nach NW schließlich nur noch eine dünnbankige Wechsellagerung in sandsteifigen Schiefern eingeschlossen ist.

Nordwestlich der o. g. Linie nimmt die Mächtigkeit des unteren Teils der Subzone sehr schnell ab. Die bankige Grauwacke wird zunehmend durch sandsteifigen Kulmitonschiefer ersetzt. Es schaltet sich keine Wechsellagerung als faziell übereinanderliegendes Schichtglied zwischen Grauwacke und Tonschiefer. Auf der Linie Iberg-Bockswoische-Gr. Hüntensteins ist im Hangenden von 100 - 150 m Kulmitonschiefern nur noch im obersten Teil der mucronatus-Subzone eine etwa 100 m mächtige Grauwackenfolge vorhanden.
fer einzuschalten. Etwa von der Linie Wildemann - Bockswiese nach NW beginnt die Grauwackenschüttung in immer jüngeren Horizonten. Chronologisch wandert das Einsetzen der Hauptgrauwacken-Schüttung von der Basis der mucronatus-Subzone (südwestlich Clausthal) über die o. g. Linie (obere mucronatus-Subzone) bis in die untere spirale-Subzone auf der Linie Trünketal - Langelsheim.

b. Die Grauwackenschüttung im Unterkarbon III und Namur (Flysch-Phase)

Abb. 8: Verlagerung der Grauwackesedimentation im Unterkarbon III
Shifting of greywacke deposition during Lower Carboniferous III
Südwestlich des Iberges ist die Mächtigkeit der mucronatus-Grauwacken nicht bekannt, da ihre Untergrenze mit den elegans-Tonschiefern in der Grube Hilfe Gottes nicht erreicht ist.

Auf der Höhe von Lautenthal ist die Grauwacke dieser Subzone gänzlich zugunsten von Kulmtonschiefern ausgekeilt. Die mucronatus-Kulmtonschiefer haben hier eine Mächtigkeit von ungefähr 20 m. Südwestlich von Lautenthal kann eine höhere Mächtigkeit der mucronatus-Tonschiefer aufgrund der im Ganzen größeren Mächtigkeit der Kulmtonschiefer nur vermutet werden. In Richtung des nordwestlichen Harzrandes nehmen die mucronatus-Tonschiefer weiter bis auf wenige m (Junkernberg) ab.

Das Einsetzen der spirale Grauwacken über den Kulmtonschiefer ist nicht so abrupt wie das der elegans- oder mucronatus-Grauwacken. Die Grauwackenfolge bleibt zunächst reich an Tonschiefern, es schalten sich auch geringmächtige Wechsellagerungen als Übergang ein (Abb. 9).
Abb. 10: Mächtigkeitsverteilung der Unterkarbon III - Sedimente

Thickness distribution of Low Carboniferous III-sediments

Oberharzer

Devonsattel

1000 m

1 km

Konglomerat
Grauwacke
Wechselfolgerung
Schiefen

1
2
3
4
5

Namur
cu III gemma
epurea - Subz.
mucronatus - Subz.
elegans - Subz.
cu III - A. fasciatus
Im oberen Teil der spirale Subzone ist eine Folge aus einer Wechsellagerung mit konglomeratischer Basis, Grauwacken mit mächtigen Schiefereinschaltungen und zwei Konglomerathorizonten, die bis an die Grenze zum cu III gamma 1 reicht, weit verbreitet. Besonders die Wechsellagerung in ihrem unteren Teil ("spirale-Wechsellagerung") taucht in den Querprofilen von der Gegend um Clausthal-Zellerfeld bis an den nordwestlichen Harzrand bei Seesen immer wieder auf.

Durch die in dieser Arbeit zusammengetragenen Beobachtungen kann das SCHNEIDER'sche Schüttungsmodell bestätigt und in einer verfeinerten Form wiedergegeben werden. In Abb. 10 ist der Versuch unternommen worden, die aus der untersuchten Mächtigkeitsverteilung der Subzonen gewonnenen flach-linsenförmigen Zeit-Gesteinseinheiten in einem dreidimensionalen Bild darzustellen. Dies ist besonders gut für jene Subzonen möglich, die in ihrer gesamten Mächtigkeit über eine größere Fläche zu beobachten sind (mucronatus- und spirale-Subzonen).

B. SEDIMENTOLOGISCHER TEIL

1. Einleitung

Es wurden die Profile folgender Grauwacken-Steinbrüche aufgenommen und im Rahmen der vorliegenden Untersuchung quantitativ ausgewertet:

- Stbr. Untere Innerste (I) Basis mucronatus-Subz. (RANKE 1971)
- Jung (II) Top mucronatus-Subz. (LIESCHE 1970)
- Adlersberg (III) Basis spirale-Subz. (RIEBERT 1973)
- Trogtal (IV) Basis spirale-Subz. (RIEBERT 1973)

Folgende Kriterien waren dabei von Wichtigkeit:

a) Bankmächtigkeit; Mächtigkeit der Grauwacke und der Schiefer
b) Maximale Korngröße an der Basis; Visuell, unter Zuhilfenahme einer Meßlupe, geschätzt.
c) Bankinterner Aufbau; Gradierung, Einschlüsse, Parallel- und Schrägenschichtung, convolute bedding. (BOUMA-Abfolge)
d) Sohlschichten: Form, Tiefe, Richtung.

Die Profile wurden im Maßstab 1:50 gezeichnet (Abb. 11-14) und die Beobachtungen der Bankmächtigkeiten (BM) und der maximalen Korngröße an der Basis (MKB) statistisch ausgewertet (Abb. 15). Dazu wurde noch das Verhältnis der Mächtigkeiten von Grauwacke und Tonschiefer (G/T) bestimmt.

die bis zu mehreren m mächtigen Einschaltungen sandstreifiger Tonschiefer, die als Ablagerungen relativ Turbidit-armen Zeiten nichts mit der eigentlichen Grauwackenschichtung im beobachteten Bereich zu tun haben.

Neben den Untersuchungen der o. g. Steinbruchprofile wurde das Profil eines kleinen Grauwacke-Zyklus an der Oker-Vorsperre (Westhang des Ochsen-Berges) detailliert unter dem Gesichtspunkt des Zusammenhangs zwischen Bankaufbau und Sedimentationsrichtung untersucht. Zusätzlich zu diesen quantitativen Beobachtungen lieferten die tektonischen Querprofile noch einige mehr qualitative Beobachtungen, die an den Anfang des folgenden Abschnittes gestellt sind.

2. Der zyklische Aufbau der Grauwackenfolge

Auch die Gesamtheit der elegans-Subzone zeigt einen großzyklischen Aufbau. Sie beginnt mit einer etwa 100 m mächtigen Folge derbe z. T. konglomeratischer Grauwacken und geht über eine Wechsellschichtung in Tonschiefer über. Dieser Zyklus, der annähernd 400 m Mächtigkeit umfaßt, ist im oberen Borntal und im Tal des Steinbrückerlöchs aufgeschlossen.

Mit der mucronatus-Subzone beginnt ein weiterer Großzyklus, der zusammen mit Teilen der im Hangenden folgenden spiralae-Subzone quantitativ erfassbar ist. Es läßt sich nicht beurteilen wie weit dieser Großzyklus ins Hangende reicht bzw. wie viele Großzyklen noch folgen.

a. Mucronatus-Subzone

Das mit 170 m aufgeschlossener Mächtigkeit ausgewertete Profil (Abb. 11) an der Unteren innerste (Westhang) zeigt die Grauwacken an der Basis der mucronatus-Subzone. Die Häufigkeitsverteilung der BM hat ein 1. Maximum bei 0,55 m und ein 2. Maximum bei 2,5 m Bankmächtigkeit. Etwa 50% aller Bänke sind dicker als 0,50 m. Die Häufigkeitsverteilung der MKB zeigt ähnliche Verhältnisse: Zu einem 1. Maximum bei 2 mm kommt ein 2. Maximum bei 5 mm Korngröße. Etwa 65% aller Bänke haben Korngrößen zwischen 1 und 3 mm an der Basis. Das Grauwacke/Tonschiefer Verhältnis liegt bei 15:1. Das mit 140 m aufgeschlossener Mächtigkeit ausgewertete Profil (Abb. 12) im Steinbruch Jung (Top mucronatus Subzone) zeigt eine deutliche Abnahme sowohl der BM und MKB, als auch des G/T Verhältnisses. Das einzige deutliche Maximum der BM liegt bei 0,25 m und etwa 75% aller Bänke liegen im Korngrößenbereich bis 1 mm. Das Grauwacke/Tonschiefer Verhältnis ist auf 6:1 abgesunken. Zwischen beiden Profilen klappt eine Aufschlußlücke von etwa 200 - 250 m, die auch die Leitschichtenpartie umfaßt. Dieser Umstand und auch die Tatsache, daß es sich nicht um einen unmittelbaren Liegend-Hangendverband handelt (beide Profile liegen quer zum Streichen etwa 2000 m Luftlinie entfernt), schränken die Aussagemöglichkeit der sedimentologischen Beobachtungen hinsichtlich eines einzigen Großzyklus ein.

Abb. 15: Statistische Auswertung der Steinbruch-Profile I - IV (BM und MKB)
Statistical evaluation of bed thickness and maximum grain size measurements
b. Spirale-Subzone

c. Grauwacke-Zyklus Oker-Vorsperre

3. Die Schüttungsrichtungen der Grauwackenfolge

Die Profilaufnahmen der großen Steinbrüche im Innersten Tal haben gezeigt, daß annähernd 50 % der Grauwackenbänke an ihren Unterflächen Strömungsmerkmale tragen. Sie lassen sich nach PLESSMANN (1961) in zwei Gruppen einteilen. Da sind einmal die Marken, die durch das Einstoßen kleiner Steinchen in den tönigen Untergrund (Stoßmarken, Impact casts) oder durch über den Untergrund geschleifte Festkörper (Schleifmarken, drag marks) entstanden sind. Dieser Gruppe der sog. tool marks stehen die rein erosiven durch eine Wasserströmung entstandenen Strömungswülste (flute casts) gegenüber. Sie erreichen Tiefen bis 25 cm und sind oft mit einem größeren Material als die darüber folgende Bank ausgefüllt.

Neben dieser linearen Erosion ist an wenigen Lokalitäten auch eine flächenhafte Abtragung ganzer Bankteile zu beobachten (Steinbruch im Tal des Gr. Steinkerbaches, südlich Teil und Steinbruch Untere Innerste, Ostseite). Marken, die durch reine Sedimentauflast entstehen (Belastungsmarken, load casts) sind in diesem Zusammenhang nicht von Interesse. Durch das Einmessen und Rückrotieren der genannten Marken eröffnet sich eine Mög-
Abb. 16: Grauwacke-
Zyklus an der
Oker-Vorsperre

Sohlmarken
Imbrication
Schrägschicht.

0,5 m
lichkeit die Schüttungsrichtung der Grauwacken zu bestimmen. Da die Richtungen im Aufschluß meist um Winkel zwischen 10 und 20 Grad divergieren, müssen die Marken statistisch ausgewertet werden.

Abb. 17: Strömungsrichtungen in der Grauwackenfolge
Current directions

PLESSMANN (1961)

Strömungsrichtungen bei Wechsellagerung und Sandlagen

- cu IIIα/β: 13 Messungen
- βel: 19 Messungen
- βmu: 21 Messungen
- βspi: 50 Messungen
- cu III γ: 12 Messungen
zu III alpha - tiefes beta:
Schrägschichtung und Rippeldrift lassen eine Strömung in Richtung Ost - Südost erkennen.

zu III beta spirale:
Die Sohlmarken der Wechselagerungsbänke zeigen eine Schüttungsrichtung nach Ost - Nordost, Stromstreifung, Schrägschichtung und Rippeldrift weisen auf eine Strömung nach Nord - Nordwest.
Die übrigen Zeitabschnitte zeigen bei relativ wenigen Messungen eine starke Streuung um die generelle Schüttungsrichtung

III. DEUTUNG

Vorbemerkungen:

A. PRAEFLYSCH-PHASE

Die Zusammenstellung der schon vorhandenen stratigraphischen Untersuchungsergebnisse für das politische Unterkarbon II und III alpha haben gezeigt, daß für bestimmte Profile im Bereich des Oberharzer Devonstells die geringmächtige Kalkfazies des Oberdevons anhält bzw. die teilweise gleich alten Kieselschiefer nur geringmächtig sind. Am Iberg-Riff dauert die Kalkfazies mit Crinoiden- und Cephalopodenkalken sogar bis in das Unterkarbon III beta.

Die oberdevonische Faziesdifferenzierung in Becken mit mächtiger klastischer und Schwemmen mit geringmächtiger Karbonat-Sedimentation dauert im Bereich der Westharz Schwelle und des Iberger Riffes (dort ab Oberdevon II) bis in das tiefe Unterkarbon fort. Die Frage, ob auch die sie steuernde unterschiedliche Absenkungstendenz andauern oder ob devonische Reliefunterschiede nur ausgeglichen werden muß angesichts der relativ geringmächtigen Kieselsedimente im Unterkarbon II und III offen bleiben.

B. FLYSCH-PHASE

Die stratigraphisch-tektonischen Untersuchungen der Grauwackenfolge haben ergeben, daß die Zeit-Gesteineinheiten, d.h. in diesem Fall der Sedimentinhalt einer Subzone, im Querschnitt die Form einer flachen Linie haben. Genaue Beobachtungen zur Mächtigkeit der Subzonen quer zum Streichen, also in Schüttungsrichtung der Grauwacken sind nicht möglich. Da aber die generelle Schüttungsrichtung der Grauwacken senkrecht zu der im Querprofil erkannten Linsengestalt der Schüttungskörper steht und in Schüttungsrichtung mit einer Abnahme der Mächtigkeit auf Grund wachsender Distaltät zu rechnen ist, dürfte der Querschnitt der Linie nach Nordosten hin abnehmen.

Abb. 18: Absenkungsraten und Sedimentation im Oberdevon und Unterkarbon des Oberharzes
Subsidence and deposition in the Oberharz during Upper devonian and Lower Carboniferous

Abb. 19: Schüttungsmodell der Unterkarbon III - Grauwacken
Suggested model of greywacke deposition
Wechsellagerungen aus der ersten Grauwackenschüttung im südlichen Teil des Arbeitsgebietes (Nordrand des Oberharzer Diabazzuges) zeigen Schüttung nach Ost-Südost und damit ein nach Südosten geneigtes Relief an. Dies ist vereinbar mit der paläogeographischen Aussage der devonischen und unterkarbonischen Diabase, die den Südost-Rand der Westharz-Schwelle zum Söse-Becken hin anzeigen.

Ausgehend von der eingangs formulierten Problemstellung haben die stratigraphischen und sedimentologischen Untersuchungen zu folgendem Bild vom Ablauf der Sedimentation im Unterkarbon geführt.

IV. VERZEICHNIS DER GONIATITENFAUNEN

Die Faunen V 103 - V 108 sind zusätzliche Bestimmungen aus bisher nicht veröffentlichtem Material des Autors, das sich in der Original-Sammlung des Niedersächsischen Landesamtes für Bodenforschung, Hannover, befindet.

In den Listen stehen für:

Goniattites cren. crenistria PHILL. : crenistria
Goniattites cren. intermedius (KOB.) : intermedius
Goniattites str. striatus SOW. : striatus
Goniattites str. falcatus ROEM. : falcatus
Goniattites str. elegans BISAT : elegans
Goniattites sphaericostr. BIS. : sphaericostr.
Goniattites macrost (KNOPP) : macrost
Goniattites koboldi RUPRECIT : koboldi
Neoglypchoeris spirale (PHILL.) : spirole
Neoglypchoeris subc. subcircularis (MILL.) : subcircularis
Goniattites gran. granosus PORTLOCK : granosus

Es bedeutet ferner:
C : CINAR 1970
F : FRANKE 1970
L : LIÉSCHEN 1970
Ra : RANKE 1971
R : RIBBERT 1970 (R 1 - R 22)
V : VENZLAFF 1965
K/S : Manuskriptkarte KOOBOLD/ SCHMIDT (um 1930 ?)

C 5) Mittl. Rabental, Forststraßenanschnitt am Top der Kulmtonschiefer, (R 86 300 / H 45 600)
1 sphaericostr.

C 8) Westhang des Esels-B. (R 86 250 / H 46 420)
2 mucronatus, 1 Trilobit

C 19) Nordöstlich Willemann, Waldweg des Grummbachtals (R 89 190 / H 45 450)
2 mucronatus
100 m nördlich davon (R 89 100 / H 45 520)
1 mucronatus, 1 sphaericostraitus

C 40) Innerste-Tal, an der Bahnlinie unterhalb von 40 a (R 87 860 / H 45 410)
1 sphaericostraitus, 1 mucronatus

C 40 a) Innerste-Tal, westlicher Flügel des Adlersberg-Sattels (R 87 760 / H 45 440)
10 spirale

C 81) Östlicher Hang des Wöhlers-B. (R 89 100 / H 46 580)
5 spirale

Oberes Murrtal

m 19 3 mucronatus
m 36,5 3 mucronatus
m 37 5 mucronatus
m 51,5 2 Gon. koboldi vel Sudecicas sp. indet.
m 67 4 elegans
m 69 3 falcatus
m 73 5 falcatus
m 75 4 striatus
m 79,5 4 falcatus
m 80 2 striatus
m 83 3 striatus
m 97 2 crenistria
m 106 1 spirifer

Mittl. Murrtal

30 m östlich Mittl. Murrtal, Hangendes der Kulmtonschiefer (R 80 220 / H 46 510)
7 spirale
Obr. Murrtal

10 m östlich Obr. Murrtal in 4 - 5 m mächtigen Tonschiefern, Hangendes der Kulmtonschiefer (R 89460 / H 48460)
1 spirale

\[\text{cu III: beta spi} \]

F 2) B 242 westlich Iberg, Straßen-km 2,53 (Wechsellagerung) (R 84400 / H 43950)
1 cf. graneatus, 1 spirale vel subc.

\[\gamma \text{ gamma I} \]

F 4) B 242 westlich Iberg, bei Straßen-km 2,1 (R 84000 / H 44220)
Häufig graneatus

\[\gamma \text{ gamma I} \]

F 6) Forststraße 120 m S "Keller", (Wechsellagerung) (R 86200 / H 44980)
4 mucronatus, 2 cf. koboldi

Höhere (? beta mu

F 7) Sbr. am W-Fuß des Hohe-Berges, W' der Bahnlinie (R 88110 / H 43220)
2 cf. mucronatus

? beta mu

F 8) Sbr. JUNG, Sattelkern Innerste-Tal (R 88630 / H 43040)
Sehr häufig mucronatus und sphaericostr.

? beta mu

F 10) Steinbruch Wegekurve 150 m SSE' Wiemannsbucht (R 87020 / H 41970)
8 mucronatus

betum

F 17) Tonschiefer hinter den Fabrikgebäuden der Firma "Harzer Gleitlager", Wildemann (R 87850 / H 43770)
1 mucronatus

? beta mu

F 21) Felsen am S' Ortseingang von Wildemann, bei Straßen-km 6,7 (R 87950 / H 43710)
1 mucronatus

? beta mu

F 22) Straße Bad Grund-Iberg, Böschungsaufschlüsse am E'Hang des Schurf-Berges, (Wechsellagerung) (R 85740 / H 42760)
Spiralig skulptierte Reste

? beta spi

F 23) "Kob. 11 a-Grund. Chaussee 100 m unterhalb Taternplatz"
Material aus der Strat, Sig. des Geol. - Paläont. Inst. Göttingen
5 mucronatus

? beta mu

L 3) Straßenschnitt 200 m N' Meding, Schacht und im Obr. Auerhahnstal etwa 100 m NE' Straßen (R88700 / H 42140 und R 88720 / H 42240)
6 mucronatus

betum

L 5) = F 16) Nördl. kleiner Str., N' Sbr. JUNG, (R 88490 / H 43240)
spirale sehr häufig, 3 koboldi

betum

L 7) Einersberger Steinbruch, südl. Höhe 550,5 (R 89570 / H 41880)
2 sphaericostr., 1 cf. sphaericostr.

betum

L 8) Hang 100 m E' Einersberger Sbr., E' Bacheinschnitt (R 89700 / H 41850)
1 spirale juvenil

betum

L 9) Kleiner Sbr., N' km 3 der Bundesstr., oberhalb der Bahnlinie (R 88750 / H 41750)
1 cf. koboldi

betum

L 10) Straßenschnitt der B 242 im innerstetal bei km 4,7 (R 88570 / H 42270)
2 cf. sphaericostr., 2 mucronatus

betum

L 11) Straßenschnitt der B 242, SE' Bahnhof Frankenscharrhütte bei km 2,0 (R 90230 / H 41850)
1 sphaericostr.

betum
Rs 2 Schneise Jagen 97/98 im Gr. Lehmental, nördlich und südlich der Schneise, (R 8063/ H 3827)
und 4) häufig falcatus, elegans vel str. striatus, 1 elegans juvenil (?) cu III beta cl?
Rs 5) Grauwackensteinbruch Paulwasser, nördliches Drittel des Bruches (R 89560 / H 41060)
2 koboldi
Rs 8) Grauwackensteinbruch an der Neuen Mühle (R 84 890 / H 39850)
1 sphaericostriat
Rs 9) Straßenprofil B 241, Langenberg, km 25,5 (R 89850 / H 37030)
7 crenistria cu III alpha bis tieferes cu III beta fa
Rs 10) Grauwackensteinbruch Paulwasser Mitte des Bruches (R 89580 / H 41050)
18 mucronatus cu III beta mu
R 1) Forststraßenanschnitt am S-Hang des Schmalen Berges, oberes Schnapstal (R 84800 / H 51440)
2 cf. mucronatus cu III beta mu
R 2) Bachausschnitt unterhalb der Brücke im mittleren Schnapstal, (Wechsellagerung)
(R 84410 / H 51210)
1 mucronatus cu III beta mu
R 5) Steinbruch im W' Vorsprung des Gr. Bullars, unteres Schnapstal (R 83650 / H 50950)
1 aff. spi cu III beta mu
R 7) Fahrgangschnitt W' Luchskuppe (R 85970 / H 50410)
3 mucronatus, 1 cf. mucronatus, 1 aff. elegans cu III beta mu
R 9) Kl. Steinbruch NW' Halbe Meile Wasser, (R 85510 / H 50560)
3 cf. mucronatus cu III beta mu
R 10) Fahrgangschnitt bei Halbe Meile Wasser (R 85690 / H 50450)
1 aff. elegans, 1 cf. sphaericostriatus cu III beta mu
R 11) Weganschnitt am NW' Hang des Tränketals, Bereich 20 m W' und E' der Schneise
(Kulmonenschiesier, hangender Teil)
2 spirale, 1 mucronatus, 1 cf. mucronatus, 1 cf. koboldi cu III beta mu
R 13) Weganschnitt am S-Hang des Kl. Trogtales, unmittelbares Hangende der Kulmonenschiesier
(R 87150 / H 51930)
1 spi vel subc., 2 mucronatus, 1 cf. mucronatus cu III beta spi
R 18) Wegprofil S' Höhe 446.2 (Teufelsberg), Kulmonenschiesier (R 87530 / H 48580)
18/1) cf. cren. crenistria 18/4) 2 str. falcatus
1 cren. intermedius 18/5) 2 cren. intermedius
1 str. striatus vel str. spirifer 18/6) 2 str. elegans
18/3) str. falcatus 1 cf. str. striatus
R 19) Wegprofil wie oben
19/1 und 2 Top der Kulmonenschiesier unter den Grauwacken
2 cf. koboldi, 1 mucronatus, 1 Dimorphoceras sp. indet. cu III beta mu
19/3 Schieferpaket 60 m im Hangenden
6 spi vel subc. cu III beta mu
R 22) Hangweg am S-Hang des Schmalen Berges, (Wechsellagerung), (R 84700 / H 51500)
4 mucronatus, 4 koboldi cu III beta mu
R 26) Wechsellagerung des Tatern-Berges, Fahrgangschnitt im Bereich des Konglomerates
(R 85000 / H 52920)
1 spirale cu III beta spi
R 27) NE-Hang Gr. Kreuz-Berg (Höhe 599.4), Wechsellagerung am oberen Hangweg (88900 / H 41575)
1 mucronatus cu III beta mu
33) Grw.-Kulmtonschiefer Profil am NE-Hang des Junkern-Berges (R 9025 / H 5625)
33/1) 2 mucronatus
33/2) 2 mucronatus
33/4) 1 mucronatus
33/5) 2 mucronatus

34) Grw.-Kulmtonschiefer Profil im Gr. Hühnertal (R 9339 / H 4945)
34/1) 1 sphaericostriatus, 1 mucronatus
34/3) 1 cf. elegans
34/4) 1 falcatus
34/9) 1 atr. striatus

35) Goniatitenfunde aus den Tonschiefern und Grauwacken des Iberger Riffs (Lokalität B und Umgebung), siehe Abb. 5
1 mucronatus
1 spiral-gestreifter Rest

36) Osthang des Schildaufs N' Unt. Bärenhohl (R 84740 / H 49375)
3 spireale vel subc.

37) Grenzbereich Grw.-Tonschiefer im Bockswieser Sattelaufbruch (Südflügel)
(R 91920 / H 46700)
38/2) 1 cf. sphaericostriatus

38) Neuer Forstweg am Nordhang des Neckelberges (R 85810 / H 49640)
2 granosus

39) Raubgrube auf dem Top des Hahnenkleer Berges, Hangendes der Kulmtonschiefer (R 92150/H48870)
1 spirale

40) Baugrube südlich Geophysik-Gebäude, Universitäts-Neubaugelände Clausthal-Zellerfeld
(R 93000 / H 41380)
2 mucronatus

41) Baugrube nördlich Elektrotechnik-Gebäude (R 93400 / H 41470)
1 elegans (aequil)

42) Weganschnitt im oberen Spiegelthal an der Einmündung des Pistales, Hangendes der Kulmtonschiefer
(R 92560 / H 45450)
1 spirale, 1 koboldi (?)

43) Weganschnitt an der Ostseite des Unt. Rabentales, Hangendes der Kulmtonschiefer
(R 90210 / H 45660)
1 mucronatus, 1 cf. spirale

44) Weganschnitt auf dem Kamm zwischen Lehnental und Kl. Bremke (R 89480 / H 37330)
2 cremastria ssp. indet.

45) Kanalisationsgraben in Hahnenklee, Straße zum Hahnenkleer Berg, Top der Kulmtonschiefer
(R 92380 / H 48660)
1 mucronatus, 1 cf. sphaericostriatus

46) Neue Forststraße am Nordhang des Grumbachtals zwischen Teich und Bockswiese, 3 Fundpunkte
(R 9015 / H 4695)
4 mucronatus

47) Neuer Hangweganschnitt am Nordhang des mittl. Langetals im Jagen 18 (bei V 43 u. V 66)
(R 9630 / H 4335)
53/1) 1 cf. elegans
53/2) 1 elegans, 1 aff. sphaericostriatus

48) Schalktal-Südhang (Oberschulenberg), zwischen Wegbeginn und erstem Taleinschnitt
(R 96480 / H 44890)
1 elegans

49) Schalktal-Südhang, erste scharfe Wegkurve (östl. V 73), (R 97080 / H 44840)
2 elegans
55

R 56) Einmündung ins Schmale Lange Tal (bei V 44), (R 97350 / H 44280)
1 cf. elegans, 1 elegans

cu III beta el

Ob. Murrtal (R 5035 / H 4850)

m 67 1 sphaericostriatus
m 106 1 str. spirifer

cu III beta mu

R 57) Stadtweger Teich, Ostufer (R 93 200 / H 44 550)
1 aff. sphaericostriatus

cu III beta mu

R 58) Oberer Spiegeltaler Teich, Nordufer, Top der Kulmtonschiefer (R 92280 / H 45520)
1 cf. sphaericostriatus

cu III beta mu

R 59) Schalktal Südhang, bei V 73, (R 96920 / H 44860)
1 elegans

R 61) Ochsenberg, Westhang, an der Vorsperre der Okertalsperrre (R 99930 / H 44210)
1 crenistria ssp. indet

cu III alpha

R 62) Oberstes Rabental, nördlich Bad Grund (R 84560 / H 43340)
3 spirale vel subcircularare

cu III beta spi

R 63) Pferdekopf, NW-Hang, Neuer Forstweg (R 85760 / H 45540)
3 granosus

cu III gamma

R 64) Filterwerk Hirschler Teich, Baugrubenaushub (R 94500 / H 41120)
1 str. striatus

cu III beta str

R 66) Tränketal, Neuer Forstweg am NW-Hang, Kulmtonschiefer (R 8480 / H 5065)
m 107 1 cren, ssp. indet
m 68 1 str. striatus
m 55 2 elegans

R 67) Riesenbachtal, Weganschnitt 200 m nordwestlich der Bundesstraße (R 9850 / H 4511)
1 falcatus vel elegans (senil)

R 68) Neue Forststraße westlich "Keller" (R 8610 / H 4515)
häufig mucronatus und koboldi

Fundpunkte der Actinopera- oder Strebrochondria-Bank:

R 69) Kranichsberg, oberer Hangweg, westlich Höhe 538, 5 m (R 88420 / H 47860)

R 70) Markau Tal (R 84200 / H 43960)

R 71) Drachengrund (R 87120 / H 47970)

R 74) Sterntal, Forststraße 260 m, südlich Parkplatz (R 86810 / H 49420)

R 75) Neckelnberg, neuer Forstweg zwischen den Hedwigstätern (R 85330 / H 49540)
LITERATURVERZEICHNIS

Göttinger Diplom-Arbeiten (unveröffentlicht):

Nr. 3: FÜTTENER, Dieter (1969): Die Sedimente der nördlichen Adria vor der Küste Istriens. - 57 S., 23 Abb. DM 6,60

Nr. 17: FAUPEL, Myrtil (1975): Die Ostrakoden des Kasseler Meeressandes (Oberoligozän) in Nordhessen. - 77 S., 3 Abb., 1 Tab., 13 Taf. DM 22,--

Der Subskriptionspreis liegt jeweils 25% unter dem oben angegebenen Verkaufspreis.

Herausgabe und Vertrieb
Geologisch-Paläontologisches Institut und Museum der Universität Göttingen
D-3400 Göttingen, Goldschmidt-Str. 3. Tel. 0551 / 39-7900